

U.S. National Electrification Assessment

The National Press Club April 3, 2018

U.S. National Electrification Assessment

Welcome

Mike Howard, Ph.D. President and CEO, EPRI

The National Press Club April 3, 2018

U.S. National Electrification Assessment

Integrated Energy Network

A Pathway for Action Ensuring Safe, Reliable, Affordable and Cleaner Energy Resources

U.S. National Electrification Assessment

U.S. National Electrification Assessment

National Electrification Assessment Review

- Analysis and Results
- Energy End Use Perspective

Geoff Blanford, Ph.D. Technical Executive, Energy and Environment, EPRI

Allen Dennis Senior Program Manager, Energy Utilization, EPRI

U.S. National Electrification Assessment

Overview and Key Messages

Geoffrey Blanford, Ph.D.

Technical Executive, Energy and Environmental Analysis

National Press Club April 3, 2018

USNEA Modeling Approach: US-REGEN

RESEARCH INSTITUTE

USNEA Scenarios

a de la companya de l		
CONSERVATIVE	Slower Technology Change	 AEO 2017 growth path for GDP and service demands, and primary
REFERENCE	Reference Technology	fuel pricesEPRI assumptions for
PROGRESSIVE	Reference Technology + Moderate Carbon Price	cost and performance of technologies and energy efficiency over time
TRANSFORMATION	Reference Technology + Stringent Carbon Price	 Existing state-level policies and targets

Key Messages from National Electrification Assessment

Electrification Trend Continues	Driven by technological change and consumer choice, further bolstered by policy	To realize the
Energy Efficiency	Efficient electrification + end-use efficiency lead to falling final energy use	here Pro-active
Natural Gas	Remains an important fuel for end-use and electric generation	approaches and technology R&D are essential
System Impacts	 Improved Environmental Outcomes Electric Sector Resource Planning 	

Historical Growth in Total Energy and Electricity Use

AEO 2017 Projects Rising Total Energy and Electricity Use

Total Final Energy Declines While Electricity Demand Increases

EPCI

Total Final Energy Declines While Electricity Demand Increases

EPC

Efficient Electrification: Reference Scenario

Efficient Electrification: Transformation

Total and Electric Generation CO₂ Emissions

Ebbi

Base Year Load Shape Reflects Current Technology Stock

ELECTRIC POWER RESEARCH INSTITUTE

Ebbi

Reference Projections Reflect Electrification / Efficiency

SE-Central 2050

60

Aggregate Load Shape Already Has Winter Peak in Some Regions

EPR

Aggregate Load Shape Changes from Electrification and Efficiency

Key Messages from National Electrification Assessment

Electrification Trend Continues	Driven by technological change and consumer choice, further bolstered by policy	To realize the
Energy Efficiency	Efficient electrification + end-use efficiency lead to falling final energy use	here Pro-active
Natural Gas	Remains an important fuel for end-use and electric generation	approaches and technology R&D are essential
System Impacts	 Improved Environmental Outcomes Electric Sector Resource Planning 	

Together...Shaping the Future of Electricity

U.S. National Electrification Assessment Overview and Key Messages

Allen Dennis

Senior Program Manager, Power Delivery and Utilization

National Press Club April 3, 2018

The Integrated Energy Network – Efficient Electrification

Economic and environmental factors will increasingly reward and drive the application of electric technologies to boost energy efficiency and grid flexibility, increase productivity and improve product quality while supporting emissions reduction, water savings and safety.

Targeted Electrification Technologies

RESIDENTIAL

Air-source and ground-source heat pumps

Variable-capacity ducted heat pumps

COMMERCIAL

Variable refrigerant flow heat pumps Variable-capacity rooftop heat pumps Rooftop air-source heat pumps Heat pump water heaters Heat pump pool dehumidification Forklifts (comm & ind applications) Truck stop electrification Commercial food service equipment Water ozonation/ Wastewater treatment

INDUSTRIAL

Infrared curing and drying UV curing Induction surface treatment Induction furnaces Pipeline compression C&I heat recovery chiller Agricultural equipment Pumps (single- to three-phase)

TRANSPORTATION

Light duty passenger vehicles

Transit/School buses

Heavy duty trucks

Identification of Opportunities to Increase Productivity

Food Processing Customer Case Study

PROJECT OBJECTIVE	RESULTS		
Identify opportunities for: Energy optimization Electrification Energy related EHS (environment, health and safety)	INCREASED RELIABILITY UV system completely disinfects water and has no downtime	INCREASED EMPLOYEE SAFETY No need to transport, store and handle chlorine for water disinfection	
Water savings applications	INFRARED FOOD PROCESSING	ACOUSTIC HEATING, DRYING AND COOLING	
CUSTOMER ISSUES	Less expensive to operate and	50-75% reduction in energy	
Increase productivity to maintain market share in competitive market Water regulations related to process utilization and discharge	faster (80% less time)	Line speeds 4 times faster Can be used for rapid cooling before food is frozen into packaged containers	

EV Demand Management / Smart Charging Pilot

Real-world example at a Mid-Atlantic utility

28 Source: Pepco Demand Management Pilot for EV Charging – EPRI, Palo Alto, CA: 2015. 3002004906

© 2018 Electric Power Research Institute, Inc. All rights reserved.

EPRI's Focus – Going Forward

ANALYTICS

Establish Industry Stakeholder Group

Conduct National, Regional, and Service Territory Assessments

TECHNOLOGY PIPELINE

Identify Early Stage Efficient Electrification Technologies

Accelerate Adoption Through Expanded EPRI Lab Capabilities and Field Demonstrations

R&D COLLABORATION

Develop Electrification Roadmap

Convene Efficient Electrification National Conference

Lead Development of Virtual Centers of Excellence

INFORM INDUSTRY STAKEHOLDERS, POLICYMAKERS, REGULATORS AND CUSTOMERS

In Summary

- Many electric technologies are cost effective and offer excellent solutions to solve customer issues
- Electric technology non-energy benefits typically are the deciding factors to install the electric technology
- Technology advancements will continue "at a lightning pace"

Together...Shaping the Future of Electricity

U.S. National Electrification Assessment

National Electrification Assessment Review

- Analysis and Results
- Energy End Use Perspective

Geoff Blanford, Ph.D. Technical Executive, Energy and Environment, EPRI

Allen Dennis Senior Program Manager, Energy Utilization, EPRI

U.S. National Electrification Assessment

U.S. National Electrification Assessment

How are Electrification and the National Assessment Important to Electric Utilities?

Anda Ray (Moderator) Senior Vice President, External Relations and Technical Resources, EPRI

Jeffrey Lyash President and CEO Ontario Power Generation, Inc.; EPRI Board Member

Pat Vincent-Collawn Chairman, President, and CEO, PNM Resources, Inc.; EPRI Board Member

Sheryl Carter Director, Power Sector, Natural Resources Defense Council; EPRI Board Member

U.S. National Electrification Assessment