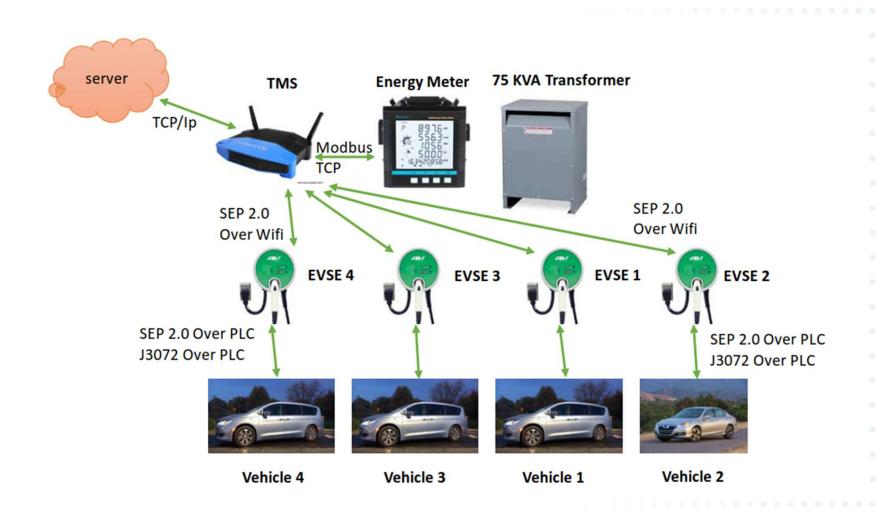

Quantifying Value of V2G

October 24, 2018 EPRI IWC

Eric Cutter, Director eric@ethree.com

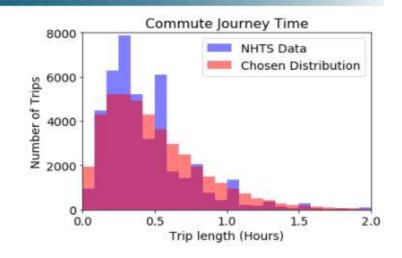
Distribution Aware V2G Demonstration

+ CEC funded project led by EPRI running since 2015



+ Project Objectives

- Develop and implement end to end V2G communications system
- Implement dynamic V2G management use cases
- Data collection and performance analysis
- Assess costs/benefits customer and utility perspectives


System Architecture

Modeling EV Driving and Charging Behavior

- + A randomized driving pattern from National Household Travel Survey data
- Modeled 5 Chevrolet Bolts commuting to UC San Diego
 - 60 kWh battery / 238 mile range
- V2G capable L2 Charging (6.6kW) available at work <u>and</u> home
- No hardware costs included in this analysis

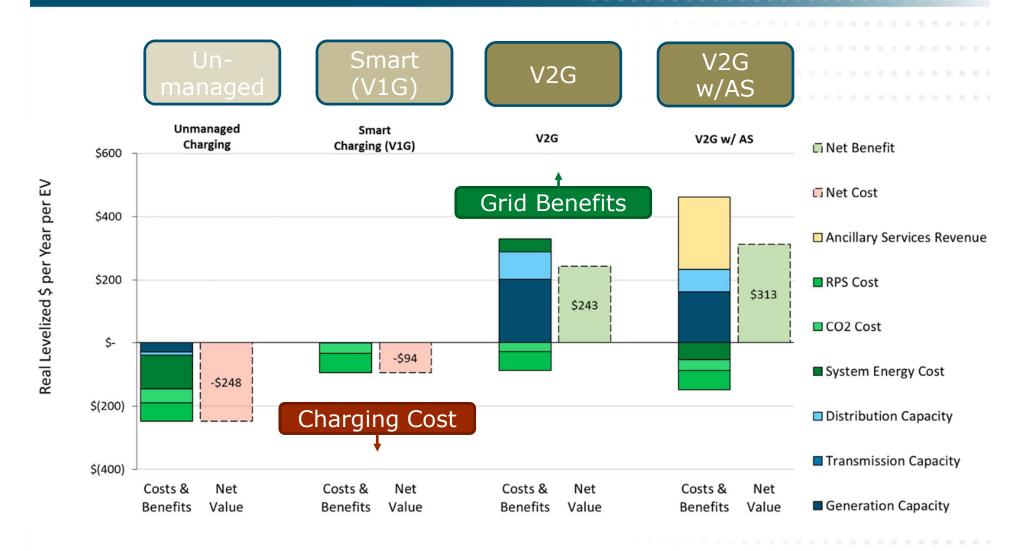
Randomly Generated driving pattern Statistics	EV 1
Hours at Home	6,105
Hours at Work	1,981
Driving Energy (kWh)	3,324
Mean commute (hrs)	0.39
Mean time at work (hrs)	8.93

Ratepayer bill (customer dispatch)

- Bill Savings
- Back-up power
- Ancillary Service Revenue

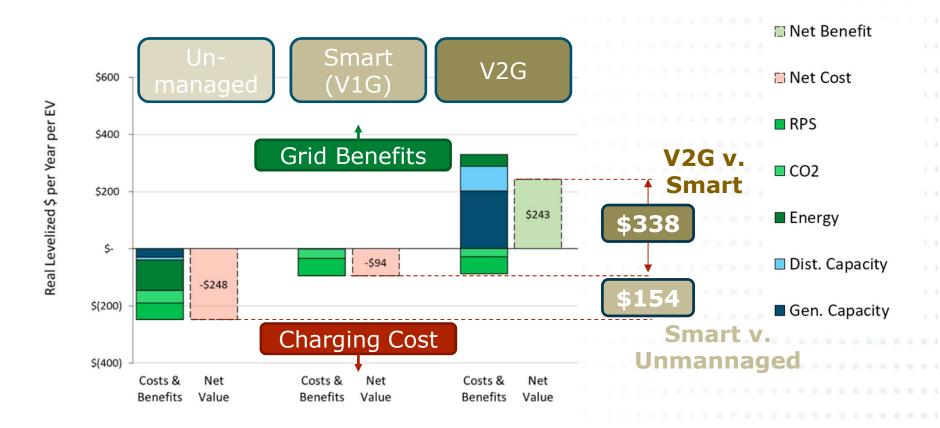
Grid costs (utility dispatch)

- System Avoided Costs
- Distribution Deferral Value
- Ancillary Service Revenue
- + Co-optimized dispatch to maximize benefits
- + Perfect foresight, price-taker
- + Constrain cycling and SOC for battery health

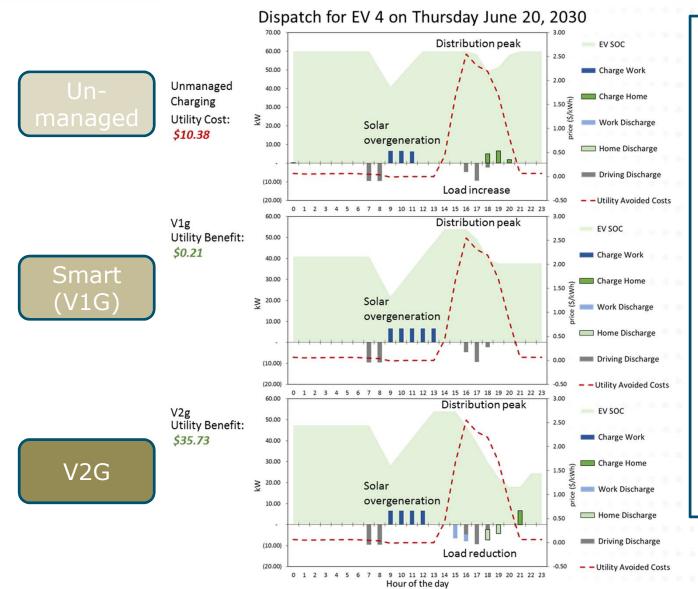

Methodology - Use Cases

	Smart Charging (V1G)	V2G
Base	V1G Base Case + Dist. Deferral	V2G Base Case
	+ Dist. Deferral	+ Dist. Deferral
		+ AS
High	V1G High Case	V2G High Case
	+ Dist. Deferral	+ Dist. Deferral
		+ AS
		+ Unconstrained Operation

- Base Case 2018 CPUC Avoided Costs with current (low) resource adequacy prices
- High Case high renewables (80% GHG reduction by 2030) with high local resource adequacy and distribution deferral value

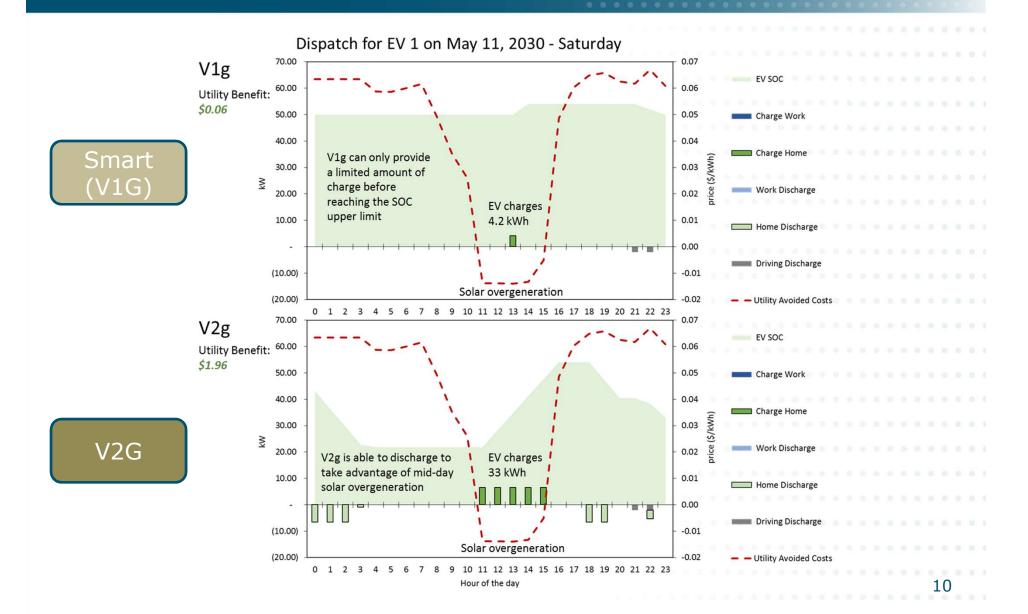

Base Case V2G Benefit Results

Incremental Benefits of V2G


Incremental grid benefits of V2G (without AS)

EPRI led CEC EPIC "Distribution Aware V2G Demonstration Project"

V2G Dispatch – Distribution Deferral



V1G: the PEVs must be charging to provide benefits and they cannot provide services once the battery is full.

V2G: the ability capacity for grid services is doubled, the dispatch can be precisely timed to coincide with peak loads and the battery can be used for grid services even after the battery is full.

V2G Dispatch - Overgeneration

Key Insights / Conclusions

+ V2G shows significant net benefit relative to V1G

- Short commutes and high SOC can limit value of managed one way charging
- Capacity value can be high in constrained areas
- Ancillary services are not necessarily dominant value

Next Steps

- More diverse vehicles and driving behavior
- Model reliable response of aggregated fleet
- Electric Vehicle Storage Accelerator (EVSA) Project at UC San Diego with Nuvve
- CPUC/CEC VGI Roadmap

KILOWATTHOURS

THANK YOU

SINGLE-STATOR WATTHOUR METER

TYPE AB1 S.

200 CL 240 V 3 W 60 Hz TA 30

MADE

Inputs

User Inputs

- Rates/charging fees
- Fuel prices
- Adoption curves
- · Marginal grid costs
- Vehicle/charger costs
- Vehicle populations
- Vehicle/charger characteristics
- Emission assumptions
- Program costs/incentives
- Time period

Pre-configured Inputs

- Feeder data
- · Driving patterns

Analysis Module

Costs

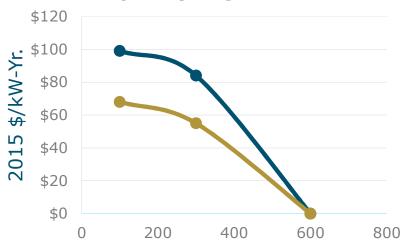
Ex. Bill impacts; capacity and T&D upgrades; charger costs

Charging

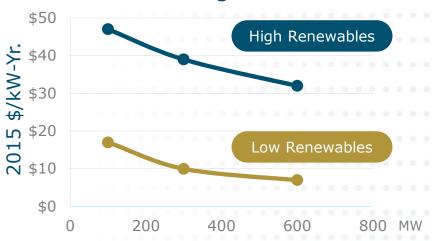
Optimization of vehicle charging to minimize fleet bills

Benefits

Ex. Reduction in gasoline demand; incentives for EVs


<u>Outputs</u>

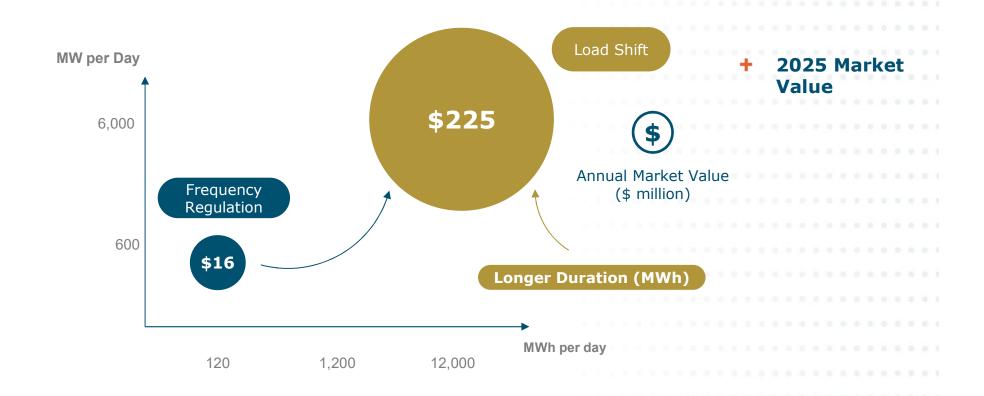
- Cost test results
- Annual cost and benefit streams
- Grid impacts (MW & \$)
- Grid upgrade costs
- Add'l sales (GWh & \$)
- Ranking of vehicle segments
- Emission impacts



Grid Demand for Frequency Regulation and Load Following

Frequency Regulation

Load Following



- Frequency Regulation market is fully saturated at 600 MW
- Larger market for load following at higher prices

E3 & LBNL modeling for CPUC Advanced DR Potential Study

Load Shift Will Be Larger Market

Grid Net Value Summary

+ Net Costs and Benefits are real levelized values per EV per year

		Grid Net Cost / Benefits (real levelized)			V2G Battery Use	
Case Description	Control Mode	Un- managed	V1G	V2G	Battery cycles	Discharge Energy (kWh)
Unconstrained High Value V2G	Utility	-\$345	-\$92	\$1,380	251	15,051
High Value V2G	Utility	-\$345	-\$92	\$1,021	164	10,225
High Value V2G without AS	Utility	-\$345	-\$92	\$1,005	133	7,969
Base V2G Case	Customer	-\$248	-\$94	\$313	105	6,293
Base V2G Case w/o AS	Utility	-\$248	-\$94	\$243	105	6,322
Base V2G Bill Optimized Case	Customer	-\$248	-\$278	\$105	155	9,325

Incremental Grid Benefit of V2G

Incremental benefit is presented as a real levelized value per EV per year

		Incremental Grid Benefit		V2G Battery Use	
Case Description	Control Mode	V1G vs Unmanaged	V2G vs V1G	Battery cycles	Discharge Energy (kWh)
Unconstrained High Value V2G	Utility	\$253	\$1,472	251	15,051
High Value V2G	Utility	\$253	\$1,113	164	10,225
High Value V2G w/o AS	Utility	\$253	\$1,097	133	7,969
Base V2G Case	Utility	\$154	\$407	105	6,293
Base V2G Case w/o AS	Utility	\$154	\$337	105	6,322
Base V2G Bill Optimized Case	Customer	- \$30	\$383	155	9,325